
Date 12/26/2016, by ​@cloudsskyone

QuadrupleO:

Enjoy OpenShift Origin On OpenStack

… enhancements in process
(new enhancements will be tweeted with #quadrupleo hashtag)

History:

Date Decription

12/22/16 1st version (3 node install)

12/30/16 2nd version (9 node HA env. with Terraform)

01/01/17 Added Git Repo for Terraform config files

01/09/2017 IoT OCP Example added

Overview

Let’s start with the work!

Preparation is the Key for a Successful Deployment!
Prepare the Ansible node
Prepare the Master node
Prepare the Worker nodes (node1 and node2)
Configuring Docker Storage on master and worker nodes
Adjust the Security Group Settings on OpenStack
NFS Share Storage Setup

Mount the nfsshare on node1 and node2
Create the ansible inventory file
DNS Configuration

Provision your OpenShift Origin Cluster on OpenStack
Verify your installation

Configuration
Create Persistent Volumes and Persistent Volume Claims
Adding Users to a project, assign roles, change password

Switch to the project test project
Create a user named test-user
Set the password for the test-user

Access the Atomic Registry
Example I: Let’s Run Rancher on OpenShift
Example II: Run the Zeppelin IoT App on OCP
Scaling Your Pods

Scaling Up Your Cluster for HA
Adding Master and Worker Nodes
Verify your HA deployment

Troubleshooting
Service restart for master and nodes
Uninstall

Known Issues
Web Console becomes sometimes unresponsive
Exited containers don’t get purged automatically

References and useful links

Getting help

Appendix
The final Ansible inventory file
Terraform Configs for Creating OpenShift Hosts on OpenStack

Provision your Origin base cluster

Overview
This walkthrough should work on bare metal servers or any other public cloud environments
with CentOS 7.2 / 7.3 by leaving out some OpenStack specific steps or with some minor
adjustments for public cloud environments.

Please refer to this ​blog post​ for more high level background information.

https://goo.gl/VQT9T4

Let’s start with the work!

On our OpenStack RDO Mitaka Lab we’re running 5 CentOS 7.3.1611 VMs.

● ansible node
● master node
● worker node1
● worker node2
● NFS Share node

You can run ansible on your laptop, but for this guide we’re running the ansible node on our
OpenStack environment.

We’ll extend this environment later with 2 additional nodes, the master2 and the worker node3
nodes to see how adding additional nodes works and how to achieve HA.

Note:​ to automate / orchestrate the installation on OpenStack for very large environments,
these heat templates​ might work for Origin on OpenStack too.

We recommend to use ​Terraform​ in long term to build your OpenShift Cluster Hosts anywhere
in less than 2 minutes, a Terraform script for a 9 node install is provided on Github, in ​Appendix
you’ll find a howto about how to use it.

https://github.com/redhat-openstack/openshift-on-openstack
https://www.terraform.io/

The ansible node (aka Bastian Server) is used to run the installation from it to other nodes, the
master node hosts our OpenShift web console and the Kubernetes master, etcd and more, the
worker nodes (aka minions) do the real work and run our pods, the docker registry and our
routers. The docker registry runs only on one of our worker nodes. The NFS Share node is used
to provide persistent storage for our docker storage volumes. If you’ve OpenStack Newton, you
can use Manila to provide shared storage.

After the End of the installation and configuration of the system, we’ll deploy one or more legacy
apps and see how we can apply (auto-) scaling capabilities to some of our apps and not to
others out of the box.

All VMs have a FQDN defined in their “/etc/hosts” file, the master and the 2 worker nodes are
registered with their public floating IP in DNS with a wildcard DNS entry. The ansible and NFS
Share node don’t need to have a floating IP assigned. On all VMs is the root user enabled and
you should be able to ssh passwordless from the ansible node into all other nodes by running
ssh-keygen (with no password) followed by ssh-copy-id, e.g.:

[root@ansible] ssh-copy-id -i ~/.ssh/id_rsa.pub master.​<your domain>

Tip​: to do your live easier, we'd recommend to create a base CentOS 7.3 image on OpenStack
and create a SnapShot from it and run the master and worker node instances from this golden
SnapShot.

The base CentOS image should have the following definitions in /etc/ssh/sshd_config

PermitRootLogin yes
PasswordAuthentication yes

Use “passwd” to set the root password and delete the following line section in
.ssh/authorized_keys

no-port-forwarding,no-agent-forwarding,no-X11-forwarding,command="echo 'Please
login as the user \"centos\" rather than the user \"root\".';echo;sleep 10"

And run:
$ systemctl restart sshd.service
$ ssh-keygen
→ press 2 time enter
$ cat .ssh/id_rsa.pub >> .ssh/authorized_keys
$ exit

Now you should be able to ssh into the CentOS instance without your key (by providing the root
password).

Install the following packages on your CentOS base image, update and reboot:

$ yum -y install wget git net-tools bind-utils iptables-services bridge-utils
bash-completion
$ yum -y update
$ yum -y install NetworkManager
$ systemctl start NetworkManager.service
$ systemctl status NetworkManager.service
$ systemctl enable NetworkManager.service
$ systemctl disable sshd.service ​#currently needed because sshd dies (at least
on our environment)
$ systemctl enable sshd.socket
$ systemctl reboot

We'd recommend to create a SnapShot from this CentOS base image (e.g.
Snap-CentOS-7.3-Gold).

Note:​ After running the master, worker and nfsshare instances, please set the hostname on all
nodes:

[root@master ~]# hostnamectl set-hostname master.<your domain>
[root@node-1 ~]# hostnamectl set-hostname node1.<your domain>
[root@node-2 ~]# hostnamectl set-hostname node2.<your domain>

Preparation is the Key for a Successful Deployment!

First we’ll prepare our ansible node and clone the openshift-ansible repo from GitHub to it and
run the ansible playbook to install the required packages to the master and 2 other worker
nodes and configure the network between these nodes automatically.

Prepare the Ansible node
On your ansible node the /etc/hosts file should look similar to this:
(define this hosts file on the master and worker nodes too)

[root@ansible ~]# cat /etc/hosts
10.0.1.41 master.<your domain> master
10.0.1.42 node1.<your domain> node1
10.0.1.43 node2.<your domain> node2
10.0.1.44 nfsshare.<your domain> nfsshare

Please replace <your domain> with your own domain name and adjust the IPs.

On the ansible node we need to install epel, ansible and pyOpenSSL packages and clone the
openshift-ansible repository from Github by running:

[root@ansible ~] yum -y install
https://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-​9​.noarch.rpm
[root@ansible ~] sed -i -e "s/^enabled=1/enabled=0/" /etc/yum.repos.d/epel.repo
[root@ansible ~] yum -y --enablerepo=epel install ansible pyOpenSSL
[root@ansible ~] git clone https://github.com/openshift/openshift-ansible
[root@ansible ~] cd openshift-ansible/
[root@ansible openshift-ansible]# ll
total 232
-rw-r--r--. 1 root root 650 Dec 17 17:53 ansible.cfg.example
drwxr-xr-x. 3 root root 45 Dec 17 17:53 ansible-profile
drwxr-xr-x. 2 root root 20 Dec 17 17:53 bin
-rw-r--r--. 1 root root 1020 Dec 17 17:53 BUILD.md
….
(truncated)

The ansible node is now ready to go!

Prepare the Master node
On the master node please install the epel repo and Docker Application Container Engine and
verify if docker is running properly.

[root@master ~]
yum -y install
https://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-8.noarch.rpm
[root@master ~] sed -i -e "s/^enabled=1/enabled=0/" /etc/yum.repos.d/epel.repo
[root@master ~] yum install docker -y
[root@master ~] systemctl is-active docker
unknown

[root@master ~] systemctl enable docker.service
[root@master ~] systemctl start docker.service
[root@master ~] systemctl status docker.service

●​ docker.service - Docker Application Container Engine
 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled; vendor
preset: disabled)
 Drop-In: /etc/systemd/system/docker.service.d
 └─custom.conf
 /usr/lib/systemd/system/docker.service.d
 └─docker-sdn-ovs.conf
 Active: ​active (running)​ since Wed 2016-12-21 02:48:28 UTC; 15h ago

[root@origin-master ~]# docker version
Client:
 Version: ​1.10.3
...
Server:
 Version: ​1.10.3

Prepare the Worker nodes (node1 and node2)

On the worker nodes you need to install only docker:

On node 1:
[root@node1 ~] yum install docker -y
[root@node1 ~] systemctl is-active docker
[root@node1 ~] systemctl enable docker.service
[root@node1 ~] systemctl start docker.service
[root@node1 ~] systemctl status docker.service

On node 2:
[root@node2 ~] yum install docker -y
[root@node2 ~] systemctl is-active docker
[root@node2 ~] systemctl enable docker.service
[root@node2 ~] systemctl start docker.service
[root@node2 ~] systemctl status docker.service

Not sure​ why these steps are not automated through ansible config management yet, but you
could install docker on your CentOS Golden OpenShift base image and avoid installing it on
every node. If you use Fedora 25 Atomic Host, you don’t need to deal with these steps above,
but for now we want to go with our lovely CentOS 7.3 golden image!

Configuring Docker Storage on master and worker nodes

On OpenStack create a volume and attach to all instances (master and worker nodes), the
volume will be attached to the device /dev/vdb, edit the docker-storage-setup file as follow and
verify if the volume groups have been setuped properly (for each node I created a 10GiB
master, node1 and node2 volumes):

$ vi /etc/sysconfig/docker-storage-setup
DEVS=/dev/vdb
VG=docker-vg

$ docker-storage-setup
$ systemctl is-active docker
$ systemctl stop docker
$ rm -rf /var/lib/docker/*
$ systemctl start docker
$ systemctl status docker.service
$ vgdisplay
$ fdisk -l
$ lsblk

Adjust the Security Group Settings on OpenStack

On OpenStack you need to adapt the default security group, or whatever security group you’re
using for your VMs for your Origin installation, please refer to the following OpenShift doc:
https://docs.openshift.org/latest/install_config/install/prerequisites.html

We'd recommend to create a new security group, e.g. OpenShiftOriginSecGroup and free up
the following tcp / udp ports:

Table 7: IaaS Deployments:

22 TCP Required for SSH by the installer or system administrator.

53​ or

8053

TCP/UDP Required for DNS resolution of cluster services (SkyDNS).

Installations prior to 1.2 or environments upgraded to 1.2 use port

53. New installations will use 8053 by default so that ​dnsmasq

may be configured. Only required to be internally open on master

hosts.

80​ or ​443 TCP For HTTP/HTTPS use for the router. Required to be externally open

on node hosts, especially on nodes running the router.

1936 TCP For router statistics use. Required to be open when running the

template router to access statistics, and can be open externally or

internally to connections depending on if you want the statistics to

be expressed publicly.

4001 TCP For embedded etcd (non-clustered) use. Only required to be

internally open on the master host. ​4001​ is for server-client

connections.

https://docs.openshift.org/latest/install_config/install/prerequisites.html

2379​ and

2380

TCP For standalone etcd use. Only required to be internally open on

the master host. ​2379​ is for server-client connections. ​2380​ is for

server-server connections, and is only required if you have

clustered etcd.

4789 UDP For VxLAN use (OpenShift Origin SDN). Required only internally on

node hosts.

8443 TCP For use by the OpenShift Origin web console, shared with the API

server.

10250 TCP For use by the Kubelet. Required to be externally open on nodes.

NFS Share Storage Setup
On the nfsshare node create the nfsshare folder and make it world readable (your nfs share
should only be accessible from your private net).

Install nfs-utils (if not installed already)

[root@nfsshare ~]# yum install nfs-utils
[root@nfsshare ~]# mkdir /nfsshare; chmod 777 /nfsshare
[root@nfsshare ~]# chown -R nfsnobody:nfsnobody /nfsshare
[root@nfsshare ~]# systemctl enable nfs-server.service
[root@nfsshare ~]# systemctl start nfs-server.service

Edit or create your exports file “/etc/exports”

[root@nfsshare ~]# cat /etc/exports
/nfsshare *(rw,root_squash,no_wdelay)

Finally export the /nfsshare folder to be accessible from other client nodes later (node1 and
node2) and verify the export:

[root@nfsshare ~]# exportfs -a
[root@nfsshare ~]# exportfs
/nfsshare <world>

[root@nfsshare ~]# ls -lZ /nfsshare

After the installation if you run some containers like MySQL, Mariadb or MongoDB which need
persistent storage, you should see something like this:

Mount the nfsshare on node1 and node2
On node1 and node2 create the nfsshare folder under /nfsshare and mount it from the nfsshare
“server” and allow nfs to mount with selinux enforced:

$ mkdir /nfsshare
$ mount nfsshare:/nfsshare /nfsshare/
$ mount -l
$ vi /etc/fstab
→ add this line:
nfsshare:/nfsshare /nfsshare nfs defaults 0 0
$ setsebool -P virt_use_nfs 1
$ setsebool -P virt_sandbox_use_nfs 1
$ iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

Create the ansible inventory file

On the ansible node we need to create the inventory file, which defines the topology of our
OpenShift Kubernetes Cluster (master and nodes), the deployment type (origin), the admin and
the user credentials, node labels and more.

By default the ansible hosts inventory file is created under “/etc/ansible/hosts”, if not, please
create the “/etc/ansible/hosts” file and replace ​<your domain> ​with your own domain name:

To understand the details of the hosts inventory file, please refer to ​this guide​ for Fedora
Atomic.
The inventory file defines the set of servers grouped into different classes for ansible to
configure. The members of a certain class, e.g. “masters” will get the same configuration.

[root@ansible ~]# vi /etc/ansible/hosts

Create an OSEv3 group that contains the masters and nodes groups
[OSEv3:children]
masters
nodes
#etcd

Set variables common for all OSEv3 hosts
[OSEv3:vars]
SSH user, this user should allow ssh based auth without requiring a password
ansible_ssh_user=root

http://dustymabe.com/2016/12/07/installing-an-openshift-origin-cluster-on-fedora-25-atomic-host-part-1/

router and registry selector (for HA deployment)

openshift_router_selector='router=true'
openshift_registry_selector='registry=true'

To deploy origin, change the deployment_type to origin
deployment_type=origin

enable htpasswd authentication for admin and user users
#The admin user password is OriginAdmin, the user password is OriginUser

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true',
'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider', 'filename':
'/etc/origin/master/htpasswd'}]
openshift_master_htpasswd_users={'admin':
'$apr1$zgSjCrLt$1KSuj66CggeWSv.D.BXOA1', 'user':
'$apr1$.gw8w9i1$ln9bfTRiD6OwuNTG5LvW50'}

openshift_master_default_subdomain=cloudapps.<your domain>

host group for masters
[masters]
master.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}" openshift_public_hostname=master.<your domain>
openshift_hostname=master.<your domain> openshift_public_ip=<public floating ip
of the master>

host group for etcd, should run on a node that is not schedulable (this
doesn’t work currently on CentOS, but works on Fedora Atomic host.

#[etcd]
#<private ip of the master>

host group for nodes, includes region info
[nodes]
master.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}" openshift_public_hostname=master.<your domain>
openshift_hostname=master.<your domain>
node1.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}" openshift_public_hostname=node1.<your domain>
openshift_hostname=node1.<your domain>
node2.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}" openshift_public_hostname=node2.<your domain>
openshift_hostname=node2.<your domain>

DNS Configuration
Add DNS A records in your DNS:

Assign a wildcard DNS entry as *.cloudapps.<your domain> to the public floating IP of your
master node as specified in the ansible hosts file (A record).

Assign master.<your domain> to the public floating IP of your master node in DNS (as did for
*.cloudapps)
Assign node1.<your domain> to the floating IP of your node1 in DNS
Assign node2.<your domain> to the floating IP of your node2 in DNS

That’s it for DNS settings.

Note: you can use the magic ​xip.io​ domain service that provides wildcard DNS
for any IP address.

http://xip.io/

Provision your OpenShift Origin Cluster on
OpenStack
So, now the exciting moment comes to run our ansible deployment and provision our cluster on
master and the 2 worker nodes with the playbook!

Jump on your ansible node and run the ansible playbook, the playbook reads the instructions
from your ansible inventory file and executes several tasks such as downloading docker
images, configuring the overly network and much more:

[root@ansible ~]# cd openshift-ansible/
[root@ansible]# ansible-playbook ~/openshift-ansible/playbooks/byo/config.yml

The initial deployment needs approx. 10-15 minutes to finish, if something goes wrong by your
fist install, don’t panic, we’ll get it fixed, please refer to troubleshooting section.

At the end of the installation you should see something like this (the output is truncated):

…..
PLAY RECAP

localhost : ok=12 changed=0 unreachable=0 failed=0
master.<your domain> : ok=439 changed=114 unreachable=0 failed=0
node1.<your domain> : ok=153 changed=49 unreachable=0 failed=0
node2.<your domain> : ok=153 changed=49 unreachable=0 failed=0

Verify your installation

You should now be able to login to the OpenShift web console through:

https://master.<your domain>:8443

Note:​ the admin user password is OriginAdmin, the user password is OriginUser
You can change the password of the users with:

[root@origin-master ~]# htpasswd /etc/origin/master/htpasswd admin
[root@origin-master ~]# htpasswd /etc/origin/master/htpasswd user

Please verify your hopefully successful deployment with the following OpenShift Client “oc”
commands and the Kubernetes “kubectl” control command on your master node.

Note: You can download the client tool by visiting the About or the Command Line Tools in the
web console:

[root@master ~]# oc login -u system:admin
...

[root@master ~]# kubectl cluster-info dump
…

[root@master ~]# oc status

[root@master ~]# oc version
oc v1.3.1
kubernetes v1.3.0+52492b4
features: Basic-Auth GSSAPI Kerberos SPNEGO
Server ​https://master​.<your domain>:8443
openshift v1.3.1
kubernetes v1.3.0+52492b4

[root@master ~]# oc status
In project openshift on server https://master.<your domain>:8443

You have no services, deployment configs, or build configs.
Run 'oc new-app' to create an application.
[root@master ~]# oc get nodes
NAME STATUS AGE
master.<your domain> Ready,SchedulingDisabled 1m
node1.<your domain> Ready 1h
node2.<your domain> Ready 1h

[root@master ~]# oc get users
[root@master ~]# oc get identity

Other useful commands are:

[root@master ~]# oc status
[root@master ~]# oc get svc
[root@master ~]# oc get pods
[root@master ~]# oc logs <pod name>
[root@master ~]# oc rsh <pod name> # remote shell to container

Last but not least, see how kubernetes rock & rolls:

[root@master ~]# ​kubectl​ get services --all-namespaces
NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S)
default docker-registry 172.30.243.53 <none>
5000/TCP

https://master/

default kubernetes 172.30.0.1 <none>
443/TCP,53/UDP,53/TCP
default registry-console 172.30.223.19 <none>
9000/TCP
default router 172.30.58.172 <none>
80/TCP,443/TCP,1936/TCP

And enjoy Kolla Kubernetes (coming soon)

[root@origin-master ~]# kubectl get namespace
NAME STATUS AGE
default Active 4d
kolla Active 15s
kube-system Active 4d
logging Active 4d

Configuration
To run your own docker containers which need to run with the root privileges, you need to
manage the security context constraints​ and run at least the following commands:

[root@master ~]# oadm policy add-scc-to-user anyuid -z default
[root@master ~]# oc policy add-role-to-user admin admin -n default

On the ansible node run:

[root@ansible-terraform ~]# ansible masters -a '/usr/local/bin/oadm policy
add-cluster-role-to-user cluster-admin admin'

[root@master ~]# oc edit scc restricted

Change:

runAsUser:
 type: MustRunAsRange

To:

runAsUser:
 type: RunAsAny

https://docs.openshift.org/latest/admin_guide/manage_scc.html

Create Persistent Volumes and Persistent Volume Claims

Workloads such as Databases need persistence, to get DB containers running properly we
need to create persistent volumes and persistent volume claims. Let’s say we want to provide a
persistent volume for Mariadb which shall use our nfsshare on our nfsshsre server with the
following settings (please create the yaml file as follow):

[root@master ~]# vi maria-db.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 name: mariadb
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 nfs:
 path: /nfsshare
 server: nfsshare
 persistentVolumeReclaimPolicy: Recycle

And run “oc create” to create the persistent volume:

[root@origin-master ~]# oc create -f maria-db.yaml
persistentvolume "mariadb" created

You can either use the web console (under storage) to create the persistent volume claim, or
create the maria-db-claim yaml file as follow and create it:

Note: if you create a new service named “mariadb”, the persistent volume claim will be created
automatically and bound to the persistent volume “mariadb” created above.

So, this step is optional (please don’t use it for now):

[root@origin-master ~]# cat mariadb-claim.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mariadb
spec:
 accessModes:
 - ReadWriteOnce

 resources:
 requests:
 storage: 5Gi

Create the mariadb persistent volume claim by hand:

[root@origin-master ~]# oc create -f mariadb-claim.yaml
persistentvolumeclaim "mariadb" created

In the web console unter Storage you shall now see your Persistent Volume Claim:

Now click “Add to project” and browse the catalog and select the mariadb-persistent in the
catalog, name it mariadb and run it (if you’ve created the claim by hand, you’ll get a warning that
the claim already exists, you can ignore it safely).

Adding Users to a project, assign roles, change password

In the Websonsole create a test-project:

Switch to the project test project

[root@origin-master ~]# oc project test-project

Create a user named test-user

[root@origin-master ~]# oc create user test-user --full-name="Test User"
user "test-user" created

Verify if the user has been created properly

[root@origin-master ~]# oc get users
NAME UID FULL NAME IDENTITIES
admin 1126c0f3-c6d9-11e6-b1cb-fa163e3f8644
htpasswd_auth:admin
test-user​ b31c4b74-c954-11e6-9c7f-fa163e3f8644 Test User
user 85b33260-c6e1-11e6-b1cb-fa163e3f8644
htpasswd_auth:user

Assign the admin role to the test-user for the project / namespace test-project:

[root@origin-master ~]# oc policy add-role-to-user admin test-user -n
test-project

Now we want to allow the user to run containers which require root permissions (for instance the
mariadb persistent container) .

Note:​ to be honest, I don’t think that’s a good idea to allow users to run containers as root and
would recommend to change the container to be able to run containers without requiring root
permissions and I guess OpenShift online doesn’t allow theses settings.

We'd highly recommend to read this great blog post “​Getting any Docker image running in your
own OpenShift cluster​” written by Chris Milsted.

To allow the user (our test-user) which is the current user to run containers in our current
namespace (project / context) as root, you might want to run one of the following commands:

[root@origin-master ~]# oadm policy add-scc-to-user anyuid -z default

Or use:

[root@origin-master ~]# oadm policy add-scc-to-user anyuid
system:serviceaccount:test-project:default

The outcome of both above commands are the same, if you use:

[root@origin-master ~]# oc edit scc anyuid

You’ll see in the users section, that the following line was added

users:
- system:serviceaccount:​test-project​:default

https://blog.openshift.com/getting-any-docker-image-running-in-your-own-openshift-cluster/
https://blog.openshift.com/getting-any-docker-image-running-in-your-own-openshift-cluster/

Find where the htpasswd file exists:

[root@origin-master ~]# grep htpasswd /etc/origin/master/master-config.yaml
 name: ​htpasswd​_auth
 file: /etc/origin/master/​htpasswd

Set the password for the test-user

[root@origin-master ~]# htpasswd /etc/origin/master/htpasswd test-user

Log into the web console with the test-user credentials:

Test if the test-user can create a mariadb named mydb, create a persistent volume first and
create the mydb from mariadb catalog in the dashboard:

[root@master ~]# cat mydb.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 name: mydb
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 nfs:
 path: /nfsshare
 server: nfsshare
 persistentVolumeReclaimPolicy: Recycle

[root@master ~]# oc create -f mydb.yaml

To get the logs, first find the pod and then use “oc logs <pod name>” to get the logs:

[root@origin-master ~]# oc get pods
NAME READY STATUS RESTARTS AGE
mydb-1-deploy 1/1 Running 0 3m
mydb-1-eki2z 0/1 Running 2 3m

[root@origin-master ~]# oc logs mydb-1-eki2z
….

2016-12-23 21:48:58 140119696226496 [ERROR] InnoDB: Unable to lock ./ibdata1,
error: 11
2016-12-23 21:48:58 140119696226496 [Note] InnoDB: Check that you do not
already have another mysqld process using the same InnoDB data or log files.
2016-12-23 21:48:58 140119696226496 [Note] InnoDB: Retrying to lock the first
data file
---> 21:48:59 Waiting for MySQL to start ...

Watch the logs:

[root@origin-master ~]# watch oc logs mydb-1-eki2z
….

Your Origin Dashboard should look similar to this:

Access the Atomic Registry
After logging into the system and selecting the default project, you should see the registry
console with the link to registry console:

https://registry-console-default.cloudapps.​<your domain>

The Atomic Registry Console provides the Overview, Images and Projects section with some
login and image commands which help you get started by pulling and pushing your docker
images to the registry:

Run your own Docker Containers

You can run any docker containers from your own images on OpenShift by pushing your own
image streams to the registry and running a container in a pod from that image in different
projects.

$ docker pull docker.io/​myimage​:latest
$ docker tag myimage docker-registry-default.cloudapps.​<your
domain>​/​project​/name:tag

You should log into the registry before pushing images please substitute <your domain> with
your own domain name:

$ docker login -p XdJHktF7hiMpnvnCcrDVqwqwWQQQnx30P0C7meXHRQnTf_I -e unused -u
unused docker-registry-default.cloudapps.​<your domain>

And push your image to the registry:
$ docker push docker-registry-default.cloudapps.​<your domain>/project​/name

In the web console under your project, please click on “Add to project” and select the “Deploy
Image” tab and select your projects namespace, the image stream and the tag:

Example I: Let’s Run Rancher on OpenShift

Pull, Push and Run Rancher on OpenShift:

[root@origin-master ~]# docker pull rancher/server

[root@origin-master ~]# docker tag docker.io/rancher/server
docker-registry-default.cloudapps.​<your domain>/<your project>​/rancher:latest

[root@origin-master ~]# docker push docker-registry-default.cloudapps.<your
domain>/​<your domain>/<your project>​/rancher

Create a router and assign the RANCHER service to it, and you’re ready to discover the world
of Rancher on OpenShift and deploy Kubernetes, Mesos, Cattle and Docker Swarm on Amazon
EC2, DigitalOcean, GCP and more!

Example II: Run the Zeppelin IoT App on OCP
To see if your OpenShift Origin environment is battle proven, let us install the ​Internet of Things
(IoT) OpenShift Demo Project​ from Github.

Ths project installs the Apache Zeppelin, which provides a web-based notebook that enables
interactive data analytics. You can make beautiful data-driven, interactive, collaborative
document with SQL, code and even more!

For our environment with CentOS, you need to create to PVs (Physical Volumes) and pass the
--zeppelin-base=centos to the init.sh script:

$ git clone ​https://github.com/sabre1041/iot-ocp.git
$ cd iot-ocp

$./init.sh ​--zeppelin-base=centos

The deployment will need near to 30 minutes to complete.

On the NFS Share we created two folders “postgresql” and “rhel-zeppelin” under /nfsshare

folders and assigned the PVs to that path:

https://github.com/sabre1041/iot-ocp
https://github.com/sabre1041/iot-ocp
https://github.com/sabre1041/iot-ocp.git

Scaling Your Pods

Scaling up or down your Container Pods is easy on OpenShift, but this makes sense only if your
apps are cloud aware and can leverage the scaling capabilities on OpenShift, to see if scaling
works for your apps, use the up and down arrows near to the pods circle or use the CLI:

[root@origin-master ~]# oc scale dc opencms ​--replicas=2
[root@origin-master ~]# oc scale dc rancher ​--replicas=2

Scaling Up Your Cluster for HA

Adding Master and Worker Nodes

For high availability and resiliency you need to extend your cluster by adding 2 more master
nodes and some additional nodes if you run out of capacity.

Please follow the ​Adding Hosts Using the Advanced Install page​ for adding additional hosts.

The only issue is, that the first command:

$ yum update atomic-openshift-utils

doesn’t work on the ansible node, you need to copy over the
“openshift-ansible-centos-paas-sig.repo” file and the GPG key from the master node to your
ansible node:

[root@origin-master ~]# scp
/etc/yum.repos.d/openshift-ansible-centos-paas-sig.repo
10.0.1.31​:/etc/yum.repos.d/

[root@origin-master ~]# scp /etc/pki/rpm-gpg/openshift-ansible-CentOS-SIG-PaaS
10.0.1.31​:/etc/pki/rpm-gpg/

(Please substitute the IP with the IP of your ansible node)

And install the atomic openshift utils:

[root@ansible ~]# yum install -y atomic-openshift-utils

Added 2 more instances for a second master and a worker nodes, extended the ansible
inventory file as described in the adding host guide, installed docker and attached 2 volumes to
each, extended the /etc/hosts file on all nodes and followed the adding host guide, the
deployment couldn’t complete, in our case the sshd was dead on the first master node, we’d to
enable sshd.socket.

Note: after adding the new hosts make sure that you can ssh from every host to another hosts
with the FQDN of the hosts without any warnings such as:

https://docs.openshift.org/latest/install_config/adding_hosts_to_existing_cluster.html#adding-nodes-advanced

Before scaling up your cluster, please set the following lines in your ansible inventory file in the
[OSEv3:vars] group:

Cluster method for master (native or pacemaker)
openshift_master_cluster_method=native

router and registry selector (for HA deployment)
openshift_router_selector='router=true'
openshift_registry_selector='registry=true'

We enabled the etcd section in our inventory file as well:

[OSEv3:children]
masters
nodes
etcd

[etcd]
master.<your domain>
master2.<your domain>

Run the scaleup playbook:

[root@ansible ~]# ansible-playbook
/usr/share/ansible/openshift-ansible/playbooks/byo/openshift-node/scaleup.yml

After the scaleup action you should see something like this:

We did an uninstall to see if the new playbook works with 2 masters and 3 worker nodes, and it
did (please refer to the final playbook in appendix).

Verify your HA deployment

[root@master ~]# oc get nodes
NAME STATUS AGE
master.<your domain> Ready,SchedulingDisabled 49m
master2.<your domain> Ready,SchedulingDisabled 49m
node1.<your domain> Ready 49m
node2.<your domain> Ready 49m
node3.<your domain> Ready 49m

Verify your etcd cluster member list and cluster health:

[root@master ~]# etcdctl -C \
 https://master.<your domain>:2379,https://master2.<your domain>:2379 \
 --ca-file=/etc/origin/master/master.etcd-ca.crt \
 --cert-file=/etc/origin/master/master.etcd-client.crt \
 --key-file=/etc/origin/master/master.etcd-client.key member list

[root@master ~]# etcdctl -C \
 https://master.<your domain>:2379,https://master2.<your domain>:2379 \
 --ca-file=/etc/origin/master/master.etcd-ca.crt \
 --cert-file=/etc/origin/master/master.etcd-client.crt \
 --key-file=/etc/origin/master/master.etcd-client.key cluster-health

Troubleshooting

Service restart for master and nodes
If something goes wrong or you change some configuration settings, it might be useful to know how
to​ start or restart OpenShift Origin services on all master and node hosts to apply your
configuration changes:

systemctl restart origin-master
systemctl restart origin-node

Note: in an HA environment use:

systemctl status origin-master-api
systemctl status origin-master-controllers

Uninstall
By some installations, the deployment failed on master after adding a new node or changing
some config files, in this case the Uninstall is very helpful.

$ ansible-playbook ~/openshift-ansible/playbooks/adhoc/uninstall.yml

Examine your Kubernetes Cluster health

On the master node run:
kubectl cluster-info dump

The output is very useful for troubleshooting, if something goes wrong, you’ll find the errors in
the dump and in “/var/log/messages” as well.

By the way did you noticed that the “oc” and “kubectl” command produce the same output?

[root@origin-master ~]# kubectl get nodes
NAME STATUS AGE
master.<your domain> Ready,SchedulingDisabled 2d
node1.<your domain> Ready 2d
node2.<your domain> Ready 2d

Welcome to Kubernetes under OpenShift ;-)

Known Issues

Web Console becomes sometimes unresponsive
The Origin web console sleeps sometimes and becomes unresponsive and needs some few
minutes to wake up and keeps loading:

We’re not sure if this has something to do with the OpenStack networking, or firewall or it’s
Origin related. It might be a Google Chrome Websocket issue (with FireFox we couldn't
observer this issue so often).

Exited containers don’t get purged automatically
On the worker nodes containers which have the status exited don’t get purged automatically,
we’d need to do that manually or via a cron job:

Note:​ this might be a configuration issue, about which we’re not aware yet.

Cleanup exited containers:
$ docker rm $(docker ps -q -f status=exited)

Cleanup dangling volumes:
$ docker volume rm $(docker volume ls -qf dangling=true)

Cleanup dangling images:
$ docker rmi $(docker images --filter "dangling=true" -q --no-trunc)

Origin Node fails to start
From time to time Origin Node service fails to start on the master, most likely docker.service
doesn’t run properly, this is due to some problems with the “Docker Storage Setup”:

To fix the issue cleanup the /var/lib/docker/*:

[root@origin-master ~]# rm -rf /var/lib/docker/*

And verify the Origin Node Service is running properly:

References and useful links

[1] ​Advanced OpenShift Origin Installation
[2]​ ​Installing an OpenShift Origin Cluster on Fedora 25 Atomic
[3] ​Getting any Docker image running in your own OpenShift cluster
[4] ​OpenShift On OpenStack Presentation (by Diane Müller & Daneyon Hansen)
[5] ​OpenShift 3.3 Piplelines - Deep Dive

Getting help
If you’ve any questions, please comment on a section on this page or join the
openshiftcommons slack community​ and ask your questions or provide your much appreciated
feedback there.

https://docs.openshift.org/latest/install_config/install/advanced_install.html#install-config-install-advanced-install
http://dustymabe.com/2016/12/07/installing-an-openshift-origin-cluster-on-fedora-25-atomic-host-part-1/
https://blog.openshift.com/getting-any-docker-image-running-in-your-own-openshift-cluster/
http://danehans.github.io/v3_presentation/#/
https://blog.openshift.com/openshift-3-3-pipelines-deep-dive/
https://openshiftcommons.slack.com/

Appendix

The final Ansible inventory file

Create an OSEv3 group that contains the masters and nodes groups
[OSEv3:children]
masters
nodes
etcd
#new_nodes
#new_masters

Set variables common for all OSEv3 hosts
[OSEv3:vars]
SSH user, this user should allow ssh based auth without requiring a password
ansible_ssh_user=root

If ansible_ssh_user is not root, ansible_sudo must be set to true
#ansible_sudo=true

router and registry selector (for HA deployment)
openshift_router_selector='router=true'
openshift_registry_selector='registry=true'

To deploy origin, change deployment_type to origin
deployment_type=origin

enable htpasswd authentication

#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true','kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/openshift/openshift-passwd'}]

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/origin/master/htpasswd'}]
openshift_master_htpasswd_users={'admin':
'$apr1$zgSjCrLt$1KSuj66CggeWSv.D.BXOA1', 'user':
'$apr1$.gw8w9i1$ln9bfTRiD6OwuNTG5LvW50'}

openshift_master_default_subdomain=cloudapps.<your domain>
openshift_master_cluster_method=native

host group for masters
[masters]
master.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}" openshift_public_hostname=master.<your domain>
openshift_hostname=master.<your domain> openshift_public_ip=​xxx.xxx.xxx.xxx
master2.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}" openshift_public_hostname=master2.<your domain>
openshift_hostname=master2.<your domain> openshift_public_ip=​xxx.xxx.xxx.xxx

host group for etcd, should run on a node that is not schedulable
[etcd]
#​xxx.xxx.xxx.xxx
master.<your domain>
master2.<your domain>

host group for nodes, includes region info
[nodes]
master.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}" openshift_public_hostname=master.<your domain>
openshift_hostname=master.<your domain>
master2.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}" openshift_public_hostname=master2.<your domain>
openshift_hostname=master2.<your domain>
node1.<your domain>
openshift_node_labels="{'router':'true','registry':'true','region': 'infra',
'zone': 'default'}" openshift_public_hostname=node1.<your domain>
openshift_hostname=node1.<your domain>
node2.<your domain>
openshift_node_labels="{'router':'true','registry':'true','region': 'infra',
'zone': 'default'}" openshift_public_hostname=node2.<your domain>
openshift_hostname=node2.<your domain>
node3.<your domain>
openshift_node_labels="{'router':'true','registry':'true','region': 'infra',
'zone': 'default'}" openshift_public_hostname=node3.<your domain>
openshift_hostname=node3.<your domain>

[new_masters]
#master2.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}"

[new_nodes]
#node3.<your domain> openshift_node_labels="{'region': 'infra', 'zone':
'default'}"
#master2.<your domain> openshift_schedulable=false

Terraform Configs for Creating OpenShift Hosts on OpenStack
With Terraform you can spin up your master, worker and etcd nodes on OpenStack within 1-2
minutes. You can install Terraform by following this ​link​.

The following config files from our quadrupleo Github Repo deploys 9 nodes (3 masters, 2
worker nodes, 3 etcds and the LB (HAProxy)) with a new network “openshift”, subnets, router,
security group, etc. on your OpenStack cloud .You can adjust this config files as you need, by
simply commenting out the masters, nodes and HAProxy or other resources such as floatingIps,
etc.

Note:​ these config files don’t add any volumes to the hosts yet.

You can checkout the config files from Github:

$ git clone https://github.com/cloudssky/quadrupleo.git
$ cd quadrupleo/
$ cp terraform.tfvars.sample terraform.tfvars

And provide the right values for your OpenStack environment terraform.tfvars file (keep this file
in a safe place):

$ vi terraform.tfvars

user_name = "your user name"
tenant_name = "your tenant name"
password= "your password"
auth_url = "http://<your ip/ domain>:5000/v2.0"
external_gateway = "the id of your external gateway"
image = "your image name"
pool = "external floating ip pool. default is public"

Check your plan:

show your plan
$ terraform plan

save your plan
$ terraform plan -out quadrupleo-`date +'%s'`.plan

https://www.terraform.io/intro/getting-started/install.html

Provision your Origin base cluster

Now you’re ready to provision your base cluster in less than one minute:

$ terraform apply

$ terraform show

In Horizon, under Network Topology, you should see something similar to this:

destroy your cluster (​use it with caution!!!!!​)
$ ​terraform destroy

To create the Terraform Graph, you might want to use:

$ terraform graph > openshift.dot
$ dot openstack.dot -Tsvg -o openshift.svg

You’ll get something similar to this (only to show how terraform rocks):

